Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 445
Filtrar
1.
PLoS Genet ; 20(3): e1011210, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38536778

RESUMO

Sex is determined by multiple factors derived from somatic and germ cells in vertebrates. We have identified amhy, dmrt1, gsdf as male and foxl2, foxl3, cyp19a1a as female sex determination pathway genes in Nile tilapia. However, the relationship among these genes is largely unclear. Here, we found that the gonads of dmrt1;cyp19a1a double mutants developed as ovaries or underdeveloped testes with no germ cells irrespective of their genetic sex. In addition, the gonads of dmrt1;cyp19a1a;cyp19a1b triple mutants still developed as ovaries. The gonads of foxl3;cyp19a1a double mutants developed as testes, while the gonads of dmrt1;cyp19a1a;foxl3 triple mutants eventually developed as ovaries. In contrast, the gonads of amhy;cyp19a1a, gsdf;cyp19a1a, amhy;foxl2, gsdf;foxl2 double and amhy;cyp19a1a;cyp19a1b, gsdf;cyp19a1a;cyp19a1b triple mutants developed as testes with spermatogenesis via up-regulation of dmrt1 in both somatic and germ cells. The gonads of amhy;foxl3 and gsdf;foxl3 double mutants developed as ovaries but with germ cells in spermatogenesis due to up-regulation of dmrt1. Taking the respective ovary and underdeveloped testis of dmrt1;foxl3 and dmrt1;foxl2 double mutants reported previously into consideration, we demonstrated that once dmrt1 mutated, the gonad could not be rescued to functional testis by mutating any female pathway gene. The sex reversal caused by mutation of male pathway genes other than dmrt1, including its upstream amhy and downstream gsdf, could be rescued by mutating female pathway gene. Overall, our data suggested that dmrt1 is the only male pathway gene tested indispensable for sex determination and functional testis development in tilapia.


Assuntos
Processos de Determinação Sexual , Tilápia , Animais , Feminino , Masculino , Regulação da Expressão Gênica no Desenvolvimento , Gônadas/metabolismo , Ovário/metabolismo , Processos de Determinação Sexual/genética , Diferenciação Sexual/genética , Testículo/metabolismo , Tilápia/genética
2.
Fish Shellfish Immunol ; 146: 109438, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38341116

RESUMO

The global aquaculture industry of tilapia (Oreochromis niloticus) has been significantly impacted by the emergence of tilapia lake virus (TiLV). However, effective prevention and control measures are still not available due to a lack of unclear pathogenesis of TiLV. Our previous transcriptome found that coxsackievirus and adenovirus receptor (CAR) was in response to TiLV infection in tilapia. To explore the potential function of OnCAR, the effect of OnCAR on TiLV proliferation was analyzed in this study. The OnCAR open reading frame (ORF) sequence of tilapia was 516 bp in length that encoded 171 amino acids with an Ig-like domain and transmembrane region. The OnCAR gene showed widespread expression in all investigated tissues, with the highest levels in the heart. Moreover, the OnCAR gene in the liver and muscle of tilapia exhibited dynamic expression levels upon TiLV challenge. Subcellular localization analysis indicated that OnCAR protein was mainly localized on the membrane of tilapia brain (TiB) cells. Importantly, the gene transcripts, genome copy number, S8-encoded protein, cytopathic effect, and internalization of TiLV were obviously decreased in the TiB cells overexpressed with OnCAR, indicating that OnCAR could inhibit TiLV replication. Mechanically, OnCAR could interact with viral S8 and S10-encoded protein. To the best of our knowledge, OnCAR is the first potential anti-TiLV cellular surface molecular receptor discovered for inhibiting TiLV infection. This finding is beneficial for better understanding the antiviral mechanism of tilapia and lays a foundation for establishing effective prevention and control strategies against tilapia lake virus disease (TiLVD).


Assuntos
Doenças dos Peixes , Infecções por Orthomyxoviridae , Receptores Virais , Tilápia , Vírus , Animais , Tilápia/genética
3.
Int J Biol Macromol ; 260(Pt 2): 129632, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38253139

RESUMO

Oogenesis is a complex process regulated by precise coordination of multiple factors, including maternal genes. Zygote arrest 1 (zar1) has been identified as an ovary-specific maternal gene that is vital for oocyte-to-embryo transition and oogenesis in mouse and zebrafish. However, its function in other species remains to be elucidated. In the present study, zar1 was identified with conserved C-terminal zinc finger domains in Nile tilapia. zar1 was highly expressed in the ovary and specifically expressed in phase I and II oocytes. Disruption of zar1 led to the failed transition from oogonia to phase I oocytes, with somatic cell apoptosis. Down-regulation and failed polyadenylation of figla, gdf9, bmp15 and wee2 mRNAs were observed in the ovaries of zar1-/- fish. Cpeb1, a gene essential for polyadenylation that interacts with Zar1, was down-regulated in zar1-/- fish. Moreover, decreased levels of serum estrogen and increased levels of androgen were observed in zar1-/- fish. Taken together, zar1 seems to be essential for tilapia oogenesis by regulating polyadenylation and estrogen synthesis. Our study shows that Zar1 has different molecular functions during gonadal development by the similar signaling pathway in different species.


Assuntos
Ciclídeos , Tilápia , Feminino , Animais , Camundongos , Tilápia/genética , Tilápia/metabolismo , Peixe-Zebra/metabolismo , Ciclídeos/genética , Ciclídeos/metabolismo , Poliadenilação , Proteínas do Ovo/metabolismo , Oogênese/genética , Estrogênios , Fatores de Transcrição/genética , Fatores de Poliadenilação e Clivagem de mRNA/genética
4.
Res Vet Sci ; 166: 105097, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38007971

RESUMO

Fish-borne zoonotic trematodes (FBZT) are highly significant zoonotic trematodes that can infect humans by eating raw or undercooked fish harboring active metacercaria. In this investigation, FBZT was found in samples of widely cultivated redbelly tilapia (Tilapia zillii) obtained from the Fayum governorate. Encysted metacercaria (EMC) infection was identified in fish belonging to the heterophyid family morphologically. The prevalence of heterophyid EMC was 30.5%. EMC was identified and implemented in a subsequent study on domestic pigeons (Columba livia domestica) carried out to allow adult flukes of Pygidiopsis (P.) genata; P. summa; and Ascocotyle (A.) pindoramensis species in their small intestine. This study presents the first report that combines ultra-structure, molecular approach of three species of heterophyid flukes, ultra-structure using transmission electron microscope in P. genata, and the study of host immunological responses and associated cytokines during Pygidiopsis species infection of pigeons in Egypt. Using Quantitative Real-time PCR (qRT- PCR), the gene expression levels of six cytokines (IL-1, IL-2, IL-6, IL-10, IFN-γ and TGF-ß3) were assessed. The molecular confirmation of P. genata, P. summa, and A. pindoramensis have a registration in the GenBank under accession number MT672308.1, OR083433.1, and OR083431.1, respectively. Throughout the infection, the gut produced cytokines in considerably variable amounts. As a result of the Pygidiopsis species infection in pigeons, our data showed distinctive cytokine alterations, which could aid in figuring out the immunological pathogenesis and host defense mechanism against this infection. This study focused on different types of fish-borne trematodes, particularly the zoonotically important ones.


Assuntos
Ciclídeos , Doenças dos Peixes , Heterophyidae , Tilápia , Trematódeos , Infecções por Trematódeos , Humanos , Animais , Heterophyidae/genética , Heterophyidae/anatomia & histologia , Tilápia/genética , Columbidae , Infecções por Trematódeos/epidemiologia , Infecções por Trematódeos/veterinária , Trematódeos/genética , Citocinas/genética , Estruturas Genéticas
5.
J Environ Sci Health B ; 59(1): 21-35, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38009809

RESUMO

Although previous studies have investigated the occurrence of antibiotic resistance genes (ARGs) in aquaculture, few have monitored the concentrations and propagation of ARGs in biological tissues or investigated the key factors influencing their spread in aquaculture. This study investigated the concentration, propagation, and distribution of ARGs and bacterial communities in water sources, pond water, and tilapia tissues, and their key influencing factors, in a typical tilapia farm. ErmF, sul1, and sul2 were the dominant ARGs with high concentrations. The total concentrations of ARGs (TCAs) in tilapia tissues decreased in the following order: stomach > scales > intestine > gills (P < 0.05). Redundancy analysis and multiple linear regression revealed that suspended solids (SS) and chemical oxygen demand (COD) were positively correlated with the dominant ARGs ermF sul2, and the TCAs (P < 0.05); additionally, Chloroflexi and Bacteroidetes in tilapia aquaculture water were positively correlated with the dominant ARGs ermF and sul2, as well as the TCAs (P < 0.05). This study suggests that SS and COD were the key factors driving the distribution and spread of ARGs in tilapia aquaculture water. Additionally, Chloroflexi and Bacteroidetes were the key bacterial flora affecting the propagation of ARGs in tilapia aquaculture systems.


Assuntos
Genes Bacterianos , Tilápia , Animais , Tilápia/genética , Água , Antibacterianos/farmacologia , Bactérias/genética , Resistência Microbiana a Medicamentos/genética , China , Aquicultura
6.
Nat Commun ; 14(1): 8145, 2023 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-38066000

RESUMO

Tilapia Lake Virus (TiLV), a recently discovered pathogen of tilapia fish, belongs to the Amnoonviridae family from the Articulavirales order. Its ten genome segments have characteristic conserved ends and encode proteins with no known homologues, apart from the segment 1, which encodes an orthomyxo-like RNA-dependent-RNA polymerase core subunit. Here we show that segments 1-3 encode respectively the PB1, PB2 and PA-like subunits of an active heterotrimeric polymerase that maintains all domains found in the distantly related influenza polymerase, despite an unprecedented overall size reduction of 40%. Multiple high-resolution cryo-EM structures of TiLV polymerase in pre-initiation, initiation and active elongation states, show how it binds the vRNA and cRNA promoters and performs RNA synthesis, with both transcriptase and replicase configurations being characterised. However, the highly truncated endonuclease-like domain appears inactive and the putative cap-binding domain is autoinhibited, emphasising that many functional aspects of TiLV polymerase remain to be elucidated.


Assuntos
Doenças dos Peixes , Orthomyxoviridae , Tilápia , Vírus , Animais , Tilápia/genética , Orthomyxoviridae/genética , Vírus/genética , RNA
7.
Front Endocrinol (Lausanne) ; 14: 1292730, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38152137

RESUMO

Background: Interspecies hybridization is an important breeding method to generate fishes with heterosis in aquaculture. Using this method, hybrid Nile tilapia (Oreochromis niloticus, ♀) × blue tilapia (Oreochromis aureus, ♂) has been produced and widely farmed due to its growth and appetite superiorities. However, the genetic mechanism of these advanced traits is still not well understood. Ghrelin is a crucial gene that regulates growth and appetite in fishes. In the present study, we focused on the expression characteristics and its regulation of ghrelin in the hybrid. Results: The tissue distribution analysis showed that ghrelin was predominantly expressed in the stomach in the hybrid. Ghrelin was more highly expressed in the stomach in the hybrid and Nile tilapia, compared to blue tilapia, showing a nonadditive pattern. Two single-nucleotide polymorphism (SNP) sites were identified including T/C and C/G from the second exon in the ghrelin gene from Nile tilapia and blue tilapia. By pyrosequencing based on the SNP sites, the allele-specific expression (ASE) of ghrelin in the hybrid was assayed. The result indicated that ghrelin in the hybrid showed higher maternal allelic transcript ratios. Fasting significantly increased ghrelin overall expression at 4, 8, 12, 24, and 48 h. In addition, higher maternal allelic transcript ratios were not changed in the fasting hybrids at 48 h. The cis and trans effects were determined by evaluating the overall expression and ASE values in the hybrid. The expression of ghrelin was mediated by compensating cis and trans effects in hybrid. Conclusion: In summary, the present lines of evidence showed the nonadditive expression of ghrelin in the hybrid tilapia and its regulation by subgenomes, offering new insight into gene expression characteristics in hybrids.


Assuntos
Ciclídeos , Tilápia , Animais , Tilápia/genética , Alelos , Grelina/genética , Ciclídeos/genética
8.
Sci Rep ; 13(1): 20276, 2023 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-37985860

RESUMO

Tilapia lake virus (TiLV) is a highly contagious viral pathogen that affects tilapia, a globally significant and affordable source of fish protein. To prevent the introduction and spread of TiLV and its impact, there is an urgent need for increased surveillance, improved biosecurity measures, and continuous development of effective diagnostic and rapid sequencing methods. In this study, we have developed a multiplexed RT-PCR assay that can amplify all ten complete genomic segments of TiLV from various sources of isolation. The amplicons generated using this approach were immediately subjected to real-time sequencing on the Nanopore system. By using this approach, we have recovered and assembled 10 TiLV genomes from total RNA extracted from naturally TiLV-infected tilapia fish, concentrated tilapia rearing water, and cell culture. Our phylogenetic analysis, consisting of more than 36 TiLV genomes from both newly sequenced and publicly available TiLV genomes, provides new insights into the high genetic diversity of TiLV. This work is an essential steppingstone towards integrating rapid and real-time Nanopore-based amplicon sequencing into routine genomic surveillance of TiLV, as well as future vaccine development.


Assuntos
Doenças dos Peixes , Nanoporos , Vírus de RNA , Tilápia , Vírus , Animais , Tilápia/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Filogenia
9.
Open Biol ; 13(11): 230257, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38018094

RESUMO

African cichlid fishes of the Cichlidae family are a group of teleosts important for aquaculture and research. A thriving research community is particularly interested in the cichlid radiations of the East African Great Lakes. One key goal is to pinpoint genetic variation underlying phenotypic diversification, but the lack of genetic tools has precluded thorough dissection of the genetic basis of relevant traits in cichlids. Genome editing technologies are well established in teleost models like zebrafish and medaka. However, this is not the case for emerging model organisms, such as East African cichlids, where these technologies remain inaccessible to most laboratories, due in part to limited exchange of knowledge and expertise. The Cichlid Science 2022 meeting (Cambridge, UK) hosted for the first time a Genome Editing Workshop, where the community discussed recent advances in genome editing, with an emphasis on CRISPR/Cas9 technologies. Based on the workshop findings and discussions, in this review we define the state-of-the-art of cichlid genome editing, share resources and protocols, and propose new possible avenues to further expand the cichlid genome editing toolkit.


Assuntos
Ciclídeos , Tilápia , Animais , Ciclídeos/genética , Edição de Genes , Filogenia , Tilápia/genética , África Oriental
10.
Fish Shellfish Immunol ; 142: 109121, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37802264

RESUMO

Tilapia is one of the most economically important freshwater fish farmed in China. Streptococcosis outbreaks have been extensively documented in farmed tilapia species. Hybrid tilapia (Oreochromis niloticus ♀ × O. aureus ♂) exhibit greater disease resistance than Nile tilapia (O. niloticus) and blue tilapia (O. aureus). However, the molecular mechanism underlying the enhanced tolerance of hybrid tilapia is still poorly understood. In this study, comparative transcriptome analysis was performed to reveal the different tolerance mechanisms to Streptococcus agalactiae in the three tilapia lines. In total, 1982, 2355, and 2076 differentially expressed genes were identified at 48 h post-infection in hybrid tilapia, Nile tilapia, and blue tilapia, respectively. Functional enrichment analysis indicated that numerous metabolic and immune-related pathways were activated in all three tilapia lines. The differential expression of specific genes associated with phagosome, focal adhesion, cytokine-cytokine receptor interaction, and toll-like receptor signaling pathways contributed to the resistance of hybrid tilapia. Notably, immune response genes in hybrid tilapia, such as P38, TLR5, CXCR3, CXCL12, PSTPIP1, and TFR, were generally suppressed under normal conditions but selectively induced following pathogen challenge. These results expand our knowledge of the molecular mechanisms underlying S. agalactiae tolerance in hybrid tilapia and provide valuable insights for tilapia breeding programs.


Assuntos
Ciclídeos , Doenças dos Peixes , Infecções Estreptocócicas , Tilápia , Animais , Tilápia/genética , Ciclídeos/genética , Transcriptoma , Streptococcus agalactiae/fisiologia , Perfilação da Expressão Gênica/veterinária
11.
Sci Total Environ ; 904: 166800, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37673269

RESUMO

A 6-week trial was designed to investigate the effects of dietary sodium chloride supplementation on physiological, metabolic, and molecular stress response parameters. The findings showed that (1) there were no significant differences between sodium chloride supplementation groups (0.05S, 0.1S, and 0.15S) and the control group (P > 0.05), except for the 0.2S diet, which showed better final body weight, weight gain rate, specific growth rate, and feed conversion ratio than the control group (P < 0.05). (2) The hypothermic stress experiment results showed that the survival rates in the 0.1S and 0.15S diets were significantly higher than the control group (P < 0.05). (3) Transcription results showed that these enriched pathways in the gill were mainly energy metabolism and apoptosis pathways, while the major enrichment pathways in the liver were mainly amino acid metabolism and carbohydrate metabolism. (4) The plasma parameter results showed, compared to the control group, the 0.15S diet significantly increased the plasma GLU, TG contents, and Na+ and K+ concentrations and decreased the plasma ALT activity (P < 0.05). In addition, the 0.1S diet increased the plasma ALB content and Cl- concentration (P < 0.05). The gill Na+/K+-ATPase activity decreased markedly when the fish were fed the 0.1S and 0.15S diets (P < 0.05). The antioxidant enzyme activity results showed that the 0.1S and 0.15S diets significantly increased the T-SOD activities (P < 0.05). Gene expression results showed that compared to the control group, the 0.1S and 0.15S diets up-regulated the expression of gys, hsp70, mlcp, mlc, myosin, tnt mRNA, and down-regulated the akt, gk, and erk mRNA expression. Based on the regression analysis, the optimum dietary sodium chloride levels range from 0.10 % to 0.13 % of the diet, which could facilitate energy regulation, improve the immune response, and ultimately strengthen the cold resistance of GIFT.


Assuntos
Ciclídeos , Tilápia , Animais , Tilápia/genética , Tilápia/metabolismo , Cloreto de Sódio/metabolismo , Cloreto de Sódio na Dieta/metabolismo , Dieta/veterinária , Antioxidantes/metabolismo , Estresse Oxidativo , RNA Mensageiro/metabolismo , Ração Animal/análise , Suplementos Nutricionais/análise
12.
An Acad Bras Cienc ; 95(4): e20190509, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37585878

RESUMO

The aim of this study was to evaluate the body yield and quality of fresh and post-freezing filet of male and female fish of inbred and non-inbred AquaAmérica genetic group and the hybrid between the AquaAmérica and Tilamax varieties. Forty fish (20 males and 20 females) of each genetic group were housed in four 48-m3 hapa net cages, getting 120 fish per cage. The fish were housed at 51 days of age and farmed for 269 days. Pre-slaughter weight was higher (P<0.05) in the AquaAmérica × Tilamax males (0.805±0.204 kg) than in the inbred AquaAmérica male (0.643±0.115 kg). Filet yield percentage was higher (P<0.05) in the AquaAmérica × Tilamax males (32.14±4.72%) than in the inbred AquaAmérica (28.15±2.67%) and non-inbred AquaAmérica (29.06±2.80%) males. Head and viscera yield percentages, pH, color values (L*, a* and b*), shear force, drip loss and cooking loss did not differ significantly between the genetic groups and sexes. Alterations in meat quality were observed after freezing. In conclusion, inbreeding in the AquaAmérica variety resulted in reduced slaughter weight for males; AquaAmérica × Tilamax males have a higher filet yield; and filet quality is not influenced by crossing, inbreeding, or sex, but is changed after freezing.


Assuntos
Tilápia , Tilápia/genética , Regulação da Expressão Gênica , Congelamento , Masculino , Feminino , Animais , Alimentos Marinhos
13.
BMC Genomics ; 24(1): 476, 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37612592

RESUMO

BACKGROUND: Tilapia is one of the most essential farmed fishes in the world. It is a tropical and subtropical freshwater fish well adapted to warm water but sensitive to cold weather. Extreme cold weather could cause severe stress and mass mortalities in tilapia. The present study was carried out to investigate the effects of cold stress on the up-regulation of antifreeze protein (AFP) genes in Nile tilapia (Oreochromis niloticus). Two treatment groups of fish were investigated (5 replicates of 15 fish for each group in fibreglass tanks/70 L each): 1) a control group; the fish were acclimated to lab conditions for two weeks and the water temperature was maintained at 25 °C during the whole experimental period with feeding on a commercial diet (30% crude protein). 2) Cold stress group; the same conditions as the control group except for the temperature. Initially, the temperature was decreased by one degree every 12 h. The fish started showing death symptoms when the water temperature reached 6-8 °C. In this stage the tissue (muscle) samples were taken from both groups. The immune response of fish exposed to cold stress was detected and characterized using Differential Display-PCR (DD-PCR). RESULTS: The results indicated that nine different up-regulation genes were detected in the cold-stressed fish compared to the control group. These genes are Integrin-alpha-2 (ITGA-2), Gap junction gamma-1 protein-like (GJC1), WD repeat-containing protein 59 isoform X2 (WDRP59), NUAK family SNF1-like kinase, G-protein coupled receptor-176 (GPR-176), Actin cytoskeleton-regulatory complex protein pan1-like (PAN-1), Whirlin protein (WHRN), Suppressor of tumorigenicity 7 protein isoform X2 (ST7P) and ATP-binding cassette sub-family A member 1-like isoform X2 (ABCA1). The antifreeze gene type-II amplification using a specific PCR product of 600 bp, followed by cloning and sequencing analysis revealed that the identified gene is antifreeze type-II, with similarity ranging from 70 to 95%. The in-vitro transcribed gene induced an antifreeze protein with a molecular size of 22 kDa. The antifreeze gene, ITGA-2 and the WD repeat protein belong to the lectin family (sugar-protein). CONCLUSIONS: In conclusion, under cold stress, Nile tilapia express many defence genes, an antifreeze gene consisting of one open reading frame of approximately 0.6 kbp.


Assuntos
Ciclídeos , Tilápia , Animais , Ciclídeos/genética , Resposta ao Choque Frio/genética , Tilápia/genética , Genes Reguladores , Temperatura Baixa , Conexinas
14.
PeerJ ; 11: e15599, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37456864

RESUMO

As an important farmed fish, tilapia has poor tolerance to low-temperatures. At the same time, different tilapia strains have apparent differences in low-temperature tolerance. In this study, using the iTRAQ method, the phosphorylated proteomics of two tilapia strains (Oreochromis niloticus and Oreochromis aureus) with different tolerances to low-temperature stress were quantitatively and comparatively analyzed, to clarify the physiological mechanism of tilapia's response to low-temperature stress. Through the GO and IPR analyses of differentially phosphorylated proteins, a number of similarities in physiological activities and regulatory effects were found between the two tilapias in response to low-temperature stress. Many differentially phosphorylated proteins are mainly involved in lipid metabolism, cell proliferation and apoptosis. However, the difference in endurance of low temperature of these two tilapias might be related to the differences in categories, expression and modification level of genetic products which were involved in the aforementioned physiological processes. And meanwhile, the enrichment results of KEGG showed the changes of multiple immune-related and growth-related phosphorylated proteins in the cytokine-cytokine receptor interaction pathway in O. aureus are more prominent. Furthermore, the significantly enriched pathway of carbohydrate digestion and absorption in O. niloticus may indicate that low-temperature stress exerts a more severe impact on energy metabolism. The relative results would help elucidating the molecular mechanism by which tilapia responds to low-temperature stress, and developing culture of tilapia species.


Assuntos
Ciclídeos , Tilápia , Animais , Tilápia/genética , Ciclídeos/genética , Temperatura , Temperatura Baixa , Citocinas/metabolismo
15.
Gen Comp Endocrinol ; 342: 114340, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37364646

RESUMO

In estuarine environments, euryhaline fish maintain a narrow range of internal osmolality despite daily changes in environmental salinity that can range from fresh water (FW) to seawater (SW). The capacity of euryhaline fish to maintain homeostasis in a range of environmental salinities is primarily facilitated by the neuroendocrine system. One such system, the hypothalamic-pituitary-interrenal (HPI) axis, culminates in the release of corticosteroids such as cortisol into circulation. Cortisol functions as both a mineralocorticoid and glucocorticoid in fish because of its roles in osmoregulation and metabolism, respectively. The gill, a key site for osmoregulation, and the liver, the primary storage site for glucose, are known targets of cortisol's actions during salinity stress. While cortisol facilitates acclimation to SW environments, less is known on its role during FW adaptation. In this study, we characterized the responses of plasma cortisol, mRNA expression of pituitary pro-opiomelanocortin (pomc), and mRNA expression of liver and gill corticosteroid receptors (gr1, gr2, and mr) in the euryhaline Mozambique tilapia (Oreochromis mossambicus) under salinity challenges. Specifically, tilapia were subjected to salinity transfer regimes from steady-state FW to SW, SW to FW (experiment 1) or steady state FW or SW to tidal regimen (TR, experiment 2). In experiment 1, fish were sampled at 0 h, 6 h, 1, 2, and 7 d post transfer; while in experiment 2, fish were sampled at day 0 and day 15. We found a rise in pituitary pomc expression and plasma cortisol following transfer to SW while branchial corticosteroid receptors were immediately downregulated after transfer to FW. Moreover, branchial expression of corticosteroid receptors changed with each salinity phase of the TR, suggesting rapid environmental modulation of corticosteorid action. Together, these results support the role of the HPI-axis in promoting salinity acclimation, including in dynamically-changing environments.


Assuntos
Receptores de Esteroides , Tilápia , Animais , Salinidade , Tilápia/genética , Hidrocortisona/metabolismo , Pró-Opiomelanocortina/metabolismo , Receptores de Esteroides/metabolismo , RNA Mensageiro/genética , Brânquias/metabolismo , Água do Mar , Aclimatação/fisiologia
16.
Genomics ; 115(4): 110633, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37121445

RESUMO

The Nile tilapia (Oreochromis niloticus) accounts for ∼9% of global freshwater finfish production however, extreme cold weather and decreasing freshwater resources has created the need to develop resilient strains. By determining the genetic bases of aquaculture relevant traits, we can genotype and breed desirable traits into farmed strains. We generated ATAC-seq and gene expression data from O. niloticus gill tissues, and through the integration of SNPs from 27 tilapia species, identified 1168 highly expressed genes (4% of all Nile tilapia genes) with highly accessible promoter regions with functional variation at transcription factor binding sites (TFBSs). Regulatory variation at these TFBSs is likely driving gene expression differences associated with tilapia gill adaptations, and differentially segregate in freshwater and euryhaline tilapia species. The generation of novel integrative data revealed candidate genes e.g., prolactin receptor 1 and claudin-h, genetic relationships, and loci associated with aquaculture relevant traits like salinity and osmotic stress acclimation.


Assuntos
Ciclídeos , Tilápia , Animais , Tilápia/genética , Tilápia/metabolismo , Cromatina , Brânquias/metabolismo , Ciclídeos/genética , Aquicultura
17.
J Fish Biol ; 103(1): 22-31, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36999384

RESUMO

Curcumin in 0.5% and 1% doses was given as a feed additive to tilapia (Oreochromis mossambicus) for 100 days to evaluate the effect of curcumin on fatty acid levels in brain, appetite and the growth axis-related gene expressions. A total of 180 fish were randomly stocked into 650 l tanks and fed with basal feed during acclimatization. Three treatment groups were established, each having three replicates and each replicate had 20 fish. They were fed twice on the experimental diets of 10% body weight ration per fish. Gas chromatography analysis revealed a significant change in the amount of total saturated fatty acids and total monounsaturated fatty acids in tilapia brain. The present study indicated an increase in n-3 (omega-3) and n-6 (omega-6) polyunsaturated fatty acids in brain. Real-time quantification of appetite-regulating neuropeptides in brain and growth-related gene expressions in muscle revealed a significant modulation in their mRNA expressions. This information obtained in the present study on the beneficial role of curcumin in the regulation of fatty acid levels and the expression of appetite-regulating neuropeptides and growth-regulating factors will contribute to research in feed intake and growth in fish.


Assuntos
Curcumina , Neuropeptídeos , Tilápia , Animais , Tilápia/genética , Curcumina/farmacologia , Curcumina/metabolismo , Hormônio do Crescimento/genética , Fator de Crescimento Insulin-Like I/metabolismo , Apetite , Dieta/veterinária , Neuropeptídeos/genética , Neuropeptídeos/metabolismo , Encéfalo/metabolismo , Ácidos Graxos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ração Animal
18.
Int J Mol Sci ; 24(4)2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36834978

RESUMO

The normal development of lens fiber cells plays a critical role in lens morphogenesis and maintaining transparency. Factors involved in the development of lens fiber cells are largely unknown in vertebrates. In this study, we reported that GATA2 is essential for lens morphogenesis in Nile tilapia (Oreochromis niloticus). In this study, Gata2a was detected in the primary and secondary lens fiber cells, with the highest expression in primary fiber cells. gata2a homozygous mutants of tilapia were obtained using CRISPR/Cas9. Different from fetal lethality caused by Gata2/gata2a mutation in mice and zebrafish, some gata2a homozygous mutants of tilapia are viable, which provides a good model for studying the role of gata2 in non-hematopoietic organs. Our data showed that gata2a mutation caused extensive degeneration and apoptosis of primary lens fiber cells. The mutants exhibited progressive microphthalmia and blindness in adulthood. Transcriptome analysis of the eyes showed that the expression levels of almost all genes encoding crystallin were significantly down-regulated, while the expression levels of genes involved in visual perception and metal ion binding were significantly up-regulated after gata2a mutation. Altogether, our findings indicate that gata2a is required for the survival of lens fiber cells and provide insights into transcriptional regulation underlying lens morphogenesis in teleost fish.


Assuntos
Cegueira , Ciclídeos , Fator de Transcrição GATA2 , Microftalmia , Tilápia , Animais , Cegueira/genética , Ciclídeos/genética , Microftalmia/genética , Mutação , Tilápia/genética , Peixe-Zebra/genética , Fator de Transcrição GATA2/genética
19.
Mol Biol Rep ; 50(4): 3945-3950, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36781609

RESUMO

BACKGROUND: Sarotherodon galilaeus (Linné, 1758) is a member of the family Cichlidae, which is considered the most important aquaculture freshwater species endemic to Africa and the Middle East. The genetics and molecular biology of this species are rare. This requires more comprehensive mitochondrial genomes-based phylogenetics to enhance understanding of the relationship and delineate this species. METHODS AND RESULTS: Here, we assembled the complete mitogenome of S. galilaeus using Illumina high-throughput sequencing technology. The mango tilapia mitogenome was 16,631 bp in length with an AT composition of 53.4% and 46.4% GC content. It encodes 37 genes comprising two ribosomal RNA genes (rRNAs), 22 transfer RNA genes (tRNAs), and 13 protein-coding genes (PCGs) as well as the D-loop known as the control region. The phylogenetic tree was conducted to provide a relationship within the haplotilapiine lineage based on the maximum likelihood method, and the newly sequenced S. galilaeus was clustered with other Sarotherodon species. CONCLUSION: Our results provide a new perception of the genetic basis of S. galilaeus species for further research on systematics, evolution, population genetics, and molecular ecology.


Assuntos
Ciclídeos , Genoma Mitocondrial , Mangifera , Tilápia , Animais , Filogenia , Tilápia/genética , Ciclídeos/genética , Genoma Mitocondrial/genética , Mangifera/genética , RNA de Transferência/genética
20.
Fish Shellfish Immunol ; 133: 108510, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36608812

RESUMO

Resveratrol (RES) has been found to have immunological enhancement effects on Oreochromis niloticus. In O. nilocticus, the liver, spleen and kidney act as immune target tissues, while intestine works for nutrition sensing organ. In the present study, we determined RES administration on these immune tissues transcriptomic response in genetically improved farmed tilapia (GIFT), and further analyzed the relationship between transcriptomic response and intestinal microbiota. As results, hepatic hemosiderin and intestinal goblet cells significantly increased with RES addition. Kyoto encyclopedia of genes and genomes (KEGG) pathways associated with herpes simplex virus 1 infection, calcium signaling pathway, cell adhesion molecules, apoptosis, and mitogen-activated protein kinase (MAPK)/peroxisome proliferators-activated receptors (PPAR) signaling pathways were enriched. In particular, the differentially enriched genes (DEGs) associated pathways were present in different sampling tissues, times, and comparisons, interestingly, the PPAR signaling pathway was enriched with increasing time of RES addition. The assembled DEGs presented verified expression in the kidney, liver, spleen, and intestine tissues, and fabp6 was highly expressed in the intestine. Serial DEGs of fatty acid-binding proteins (fabp7, fabp7a, fabp10a) decreased in the liver and kidney, and fabp6 significantly increased in the spleen. With time, the pathways of energy metabolism, glycan biosynthesis, and metabolism decreased and increased in the intestinal metagenome. Some Candidatus branches significantly increased (C. cerribacteria and C. harrisonbacteria) and while others decreased (C. glodbacteria, etc.), whereas C. verstraetearchaeota fluctuated with RES addition. slc27a6 and dbi were negatively correlated with bacteria involved in the lipid, energy, and carbohydrate metabolism pathways. The present study suggests that RES supplementation affected lipid metabolism in immune-related organs may be related to the PPAR signaling pathway.


Assuntos
Ciclídeos , Tilápia , Animais , Tilápia/genética , Resveratrol , Receptores Ativados por Proliferador de Peroxissomo/genética , Perfilação da Expressão Gênica/veterinária , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...